Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polar Biol ; 45(5): 857-871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673679

RESUMO

This study was performed to aid the management of the fishery for Antarctic krill Euphausia superba. Krill are an important component of the Antarctic marine ecosystem, providing a key food source for many marine predators. Additionally, krill are the target of the largest commercial fishery in the Southern Ocean, for which annual catches have been increasing and concentrating in recent years. The krill fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which has endorsed a new management framework that requires information about the spatial distribution and biomass of krill. Here, we use krill density estimates from acoustic surveys and a GAMM framework to model habitat properties associated with high krill biomass during summer and winter in the northern Antarctic Peninsula region, an area important to the commercial fishery. Our models show elevated krill density associated with the shelf break, increased sea surface temperature, moderate chlorophyll-a concentration and increased salinity. During winter, our models show associations with shallow waters (< 1500 m) with low sea-ice concentration, medium sea-level anomaly and medium current speed. Our models predict temporal averages of the distribution and density of krill, which can be used to aid CCAMLR's revised ecosystem approach to fisheries management. Our models have the potential to help in the spatial and temporal design of future acoustic surveys that would preclude the need for modelled extrapolations. We highlight that the ecosystem approach to fisheries management of krill critically depends upon such field observations at relevant spatial and temporal scales. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-022-03039-y.

2.
Ecol Appl ; 23(4): 710-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865224

RESUMO

Decision-makers charged with implementing ecosystem-based management (EBM) rely on scientists to predict the consequences of decisions relating to multiple, potentially conflicting, objectives. Such predictions are inherently uncertain, and this can be a barrier to decision-making. The Convention on the Conservation of Antarctic Marine Living Resources requires managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health and resilience of the ecosystem, and the performance of the fisheries themselves. The managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have requested advice on candidate management measures consisting of a regional catch limit and options for subdividing this among smaller areas. We developed a spatially resolved model that simulates krill-predator-fishery interactions and reproduces a plausible representation of past dynamics. We worked with experts and stakeholders to identify (1) key uncertainties affecting our ability to predict ecosystem state; (2) illustrative reference points that represent the management objectives; and (3) a clear and simple way of conveying our results to decision-makers. We developed four scenarios that bracket the key uncertainties and evaluated candidate management measures in each of these scenarios using multiple stochastic simulations. The model emphasizes uncertainty and simulates multiple ecosystem components relating to diverse objectives. We summarize the potentially complex results as estimates of the risk that each illustrative objective will not be achieved (i.e., of the state being outside the range specified by the reference point). This approach allows direct comparisons between objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model predictions. Management measures that reduce coastal fishing, relative to oceanic fishing, apparently reduce risks to both the fishery and the ecosystem. However, alternative reference points could alter the perceived risks, so further stakeholder involvement is needed to identify risk metrics that appropriately represent their objectives.


Assuntos
Tomada de Decisões , Ecossistema , Monitoramento Ambiental/métodos , Euphausiacea/fisiologia , Pesqueiros/estatística & dados numéricos , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Spheniscidae/fisiologia
3.
Am Nat ; 167(5): E140-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16671006

RESUMO

Sexual maturation profoundly affects population dynamics, but the degrees to which genetic, top-down, and bottom-up controls affect age at maturity are unclear. Salmonid fishes have plastic age at maturity, and we consider genetic and environmental effects on this trait by developing fitness functions for coho salmon (Oncorhynchus kisutch). The functions are based on size-specific survival and reproductive success, where reproductive success is the product of fecundity and ability to defend nests (females) or the product of sperm volume and ability to mate (males). We model genetic and bottom-up controls (e.g., food availability) with an environmentally explicit growth function and top-down control (predation mortality) with survival functions that consider both size-dependent and size-independent mortality. For females, we predict that early maturation rarely maximizes fitness, but males can maximize fitness by maturing early if they grow well in freshwater. We predict that early maturation is most affected by the bottom-up effects of resource distribution at sea, followed by bottom-up and genotypic effects in freshwater. Top-down processes are predicted to have strong effects on the likelihood of delayed maturation.


Assuntos
Meio Ambiente , Cadeia Alimentar , Modelos Biológicos , Oncorhynchus kisutch/crescimento & desenvolvimento , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Pesos e Medidas Corporais , Simulação por Computador , Feminino , Genótipo , Masculino , Oncorhynchus kisutch/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA